From Prototype to Production, Simplified
Sutro takes the pain away from testing and scaling LLM batch jobs to unblock your most ambitious AI projects.
import sutro as so
from pydantic import BaseModel
class ReviewClassifier(BaseModel):
sentiment: str
user_reviews = '.
User_reviews.csv
User_reviews-1.csv
User_reviews-2.csv
User_reviews-3.csv
system_prompt = 'Classify the review as positive, neutral, or negative.'
results = so.infer(user_reviews, system_prompt, output_schema=ReviewClassifier)
Progress: 1% | 1/514,879 | Input tokens processed: 0.41m, Tokens generated: 591k
█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
Prototype
Start small and iterate fast on your evaluation workflows. Accelerate experiments by testing on Sutro before committing to large jobs.
Scale
Scale your LLM evaluation workflows so your team can do more in less time. Process billions of tokens in hours, not days, with no infrastructure headaches or exploding costs.
Integrate
Seamlessly connect Sutro to your existing LLM workflows. Sutro's Python SDK is compatible with popular data orchestration tools, like Airflow and Dagster.

Benchmark at scale
Confidently evaluate models against millions of requests and billions of tokens at a time without the pain of managing infrastructure.
Get benchmark results faster and reduce costs by 10x or more by parallelizing your LLM calls through Sutro.

Get feedback faster
Shorten development cycles by getting feedback from large evaluation jobs in as little as minutes before scaling up.